A New Speech Enhancement Algorithm for Car Environment Noise Cancellation with MBD and Kalman Filtering

نویسندگان

  • Seungkwon Beack
  • Seung H. Nam
  • Minsoo Hahn
چکیده

We present a new speech enhancement algorithm in a car environment with two microphones. The car audio signals and other background noises are the target noises to be suppressed. Our algorithm is composed of two main parts, i.e., the spatial and the temporal processes. The multi-channel blind deconvolution (MBD) is applied to the spatial process while the Kalman filter with a second-order high pass filter, for the temporal one. For the fast convergence, the MBD is newly expressed in frequencydomain with a normalization matrix. The final performance evaluated with the severely car noise corrupted speech shows that our algorithm produces noticeably enhanced speech. key words: speech enhancement, multichannel blind deconvolution, Kalman filter

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal

Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Modified Kalman Filter-based Approach in Comparison with Traditional Speech Enhancement Algorithms from Adverse Noisy Environments

Abstract -The paper presents a new speech enhancement approach for a single channel speech enhancement in a noise environment. In this method speech is mixed with real-world noises from babble, car and street environments. In this paper we proposed modified Kalman method for effective speech enhancement. The proposed method is compared to the traditional Spectral Subtraction (SS), Wiener Filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 88-A  شماره 

صفحات  -

تاریخ انتشار 2005